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Abstract

Retrieval-augmented generation (RAG) is a promising way to
improve large language models (LLMs) for generating more
factual, accurate, and up-to-date content. Existing methods
either optimize prompts to guide LLMs in leveraging re-
trieved information or directly fine-tune LLMs to adapt to
RAG scenarios. Although fine-tuning can yield better perfor-
mance, it often compromises the LLMs’ general generation
capabilities by modifying their parameters. This limitation
poses challenges in practical applications, especially when
LLMs are already deployed, as parameter adjustments may
affect their original functionality. To address this, we propose
a novel method that involves learning scalable and pluggable
virtual tokens for RAG. By maintaining the LLMs’ origi-
nal parameters and fine-tuning only the embeddings of these
pluggable tokens, our approach not only enhances LLMs’
performance but also preserves their general generation ca-
pabilities. Furthermore, we design several training strategies
to improve the scalability, flexibility, and generalizability of
our method. Comprehensive experiments across 12 question-
answering tasks demonstrate the superiority of our approach.

Introduction
Large language models (LLMs) have achieved remarkable
performance across various natural language processing
tasks (Brown et al. 2020; OpenAI 2023; Touvron et al.
2023). Despite their extensive parameters enabling them
to learn rich knowledge during pre-training, LLMs may
still generate hallucinated, outdated, or inaccurate content,
especially in scenarios requiring long-tail knowledge (Ji
et al. 2023; Zhang et al. 2023b). To address this problem,
retrieval-augmented generation (RAG) has emerged as a piv-
otal strategy. By explicitly decoupling knowledge retrieval
from the backbone LLMs, such architectures have achieved
more accurate and reliable content generation and shown
particularly enhanced performance on knowledge-intensive
tasks such as open-domain question answering (Petroni et al.
2021; Tan et al. 2024; Jin et al. 2024b).

Existing efforts in RAG development can be roughly cat-
egorized into two groups (as illustrated in Figure 1). The
first group leverages the in-context learning capabilities of
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LLMs by incorporating retrieved information into the input
along with appropriate prompts (Shi et al. 2023; Ram et al.
2023). This allows for straightforward application to any off-
the-shelf LLM without tuning its parameters. However, its
effectiveness largely depends on the human experience in
crafting effective prompts and the LLM’s ability to interpret
these prompts. The second group focuses on training LLMs
to enhance their performance in RAG scenarios. This train-
ing might involve either end-to-end pre-training (Guu et al.
2020; Borgeaud et al. 2022) or fine-tuning (Lin et al. 2023;
Wang et al. 2023) for specific tasks. These approaches can
often lead to better performance, but they require significant
computational resources. Recently, parameter-efficient fine-
tuning techniques, such as LoRA (Hu et al. 2022), have been
widely studied, significantly reducing training costs. These
methods can optimize the LLMs’ parameters for RAG, but
unfortunately compromise the model’s general abilities in
non-RAG scenarios, such as commonsense reasoning and
in-context learning. All these limitations prevent their appli-
cation to LLMs already operational in real-world settings.

Therefore, a critical research problem arises: Is it possible
to enhance LLMs’ performance under RAG scenarios while
preserving their general generation capabilities? To achieve
this, we introduce a novel, lightweight tuning method named
SPRING, which learns Scalable and Pluggable viRtual to-
kens for retrIeval-augmeNted Generation. Our basic idea
is to add trainable virtual tokens to help LLMs learn RAG
problems. Through fine-tuning, these virtual tokens effec-
tively enhance the LLM’s capability to understand retrieved
information and its correlation with user inputs. Importantly,
as the LLM’s original parameters are frozen, its general gen-
eration abilities are preserved without any loss. During in-
ference, when retrieval is triggered, these trained virtual to-
kens can be simply added to the prompt, which includes both
the retrieved results and user input, thereby significantly en-
hancing performance. Moreover, we employ a scalable train-
ing approach, allowing the number of virtual tokens to be
adjusted according to the needs of the inference scenario.
Various training strategies have been implemented to further
improve the generalizability of our method, ensuring robust-
ness regardless of the number of the retrieved results.

In experiments, SPRING is trained with the base and
instruction fine-tuned versions of Mistral-7b, LLaMA-2-
7b, and LLaMA-2-13b models and evaluated on 12 com-
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Figure 1: Illustration of existing methods for RAG and our proposed method. Our method can improve LLMs’ performance in
RAG scenarios by incorporating trainable virtual tokens, and these tokens can be removed to preserve the general generation
abilities in non-RAG scenarios.

monly used QA datasets, covering both in-domain and out-
of-domain scenarios. The experimental results demonstrate
that SPRING not only effectively improves the RAG perfor-
mance of LLMs but also successfully preserves their gen-
eral generation capabilities. Overall, the SPRING method
exhibits four main characteristics:

• Lightweight yet effective. Instead of updating the full
parameters of the LLMs, we opt to freeze the pre-trained
models and only learn the embeddings for the added vir-
tual tokens. For example, adding 50 tokens to the Mistral-
7b model introduces only 0.2M parameters in total. Despite
these minimal parameters, SPRING improves the average
EM and F1 scores by more than 43% and 17% across 12
QA datasets, respectively.

• Scalable. With our proposed scalable training approach,
SPRING can be effective with any number of virtual tokens
(k ∈ [1, 50] in our experiments). Remarkably, even just one
token can substantially improve the LLMs’ performance in
RAG scenarios.

• Pluggable. Owing to its lightweight design, SPRING
can be applied in a plug-and-play manner. When retrieval is
triggered, simply adding the virtual tokens can lead to bet-
ter performance. In non-RAG scenarios, the virtual tokens
are not added so the LLMs’ original capabilities can be well
preserved. This characteristic is crucial for LLMs that have
already been deployed for practical use.

• Generalizable. Our robust training strategies ensure
that SPRING is adaptable to different retrievers and various
numbers of retrieved results. Consequently, there is no need
to retrain SPRING with each update to the retrieval system,
enhancing its practicality and efficiency.

Related Work
Retrieval-Augmented Generation Compared to standard
text generation, retrieval-augmented generation (RAG) in-
corporates a retrieval module that accesses external knowl-
edge to enhance generation quality (Lewis et al. 2020; Guu
et al. 2020; Zhu et al. 2023; Jin et al. 2024a). The main-
stream RAG follows a “retrieve-then-read” paradigm, where
the retrieval module provides external knowledge as addi-
tional context, which is then read by generation models to
produce the final output (Shi et al. 2023; Ram et al. 2023;
Borgeaud et al. 2022; Lin et al. 2023; Zhu et al. 2024).
To optimize the use of external knowledge, some methods
focus on crafting effective prompts that guide the utiliza-

tion of retrieved information (Shi et al. 2023; Ram et al.
2023). These prompt-based methods are applicable to any
LLM without tuning its parameters. However, they depend
heavily on skillful prompt writing and the LLMs’ abil-
ity to understand instructions. In contrast, other studies at-
tempts to directly train the model to better use the retrieved
knowledge. For example, REALM (Guu et al. 2020) and
RETRO (Borgeaud et al. 2022) incorporate retrieval in end-
to-end retrieval-augmented pre-training. RA-DIT (Lin et al.
2023) employs fine-tuning to enhance LLMs’ retrieval un-
derstanding. These tuning-based methods often yield bet-
ter performance than prompt-based methods by optimizing
model parameters for RAG. However, they may compromise
the LLMs’ general capabilities, particularly in non-retrieval
scenarios. Different from existing methods, we design a new
lightweight tuning method for RAG. It is a plug-and-play
module that enhances RAG performance using trainable vir-
tual tokens, which can be removed in non-RAG scenarios to
preserve the LLMs’ general generation abilities.

Parameter-Efficient Fine-Tuning The paradigms of
“pre-training then fine-tuning” have demonstrated efficacy
across various natural language (Devlin et al. 2019; Raffel
et al. 2020; Radford et al. 2019) and vision tasks (He et al.
2020; Chen et al. 2020). The common fine-tuning process
involves tuning all parameters of a model, which is com-
putational intensive, especially for LLMs. To address this,
parameter-efficient fine-tuning (PEFT) (Mangrulkar et al.
2022) approaches have been developed. These approaches
freeze most of the pre-trained models’ parameters, yet still
manage to achieve comparable performance on downstream
tasks. PEFT has been widely studied (Wan et al. 2023), and
typical methods including adapter-based tuning (Houlsby
et al. 2019; Lin, Madotto, and Fung 2020; Chen et al. 2023),
low-rank adaptation (LoRA) (Hu et al. 2022; Dettmers et al.
2023), and prompt tuning (Li and Liang 2021; Lester, Al-
Rfou, and Constant 2021; Liu et al. 2021b,a). Adapter-based
tuning inserts lightweight modules into a model’s existing
layers and have been extended to various domains (Gao
et al. 2024; Hu et al. 2023; Zhang et al. 2023a). LoRA (Hu
et al. 2022) introduces trainable low-rank matrices that ad-
just the model’s weight updates, achieving promising fine-
tuning performance on LLMs (Hu et al. 2023). Prompt
tuning incorporates a series of trainable prompt tokens to
LLMs. These tokens can be inserted either to the input layer
only (Lester, Al-Rfou, and Constant 2021; Liu et al. 2021b)
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or to all of the intermediate layers (Li and Liang 2021; Liu
et al. 2021a). In this paper, we proposes a novel prompt tun-
ing method, SPRING, specifically designed for RAG sce-
narios. Our method introduces virtual tokens between re-
trieved results and the input, exploiting the auto-regressive
generation paradigm to improve the model’s ability to uti-
lize retrieved information. Additionally, it is designed to
be scalable and pluggable, thus broadening its application
scope while preserving the original generative capabilities
of LLMs.

Methodology
To take advantage of both the flexibility of prompt-based
methods and the efficacy of fine-tuning-based methods, we
propose SPRING to learn scalable and pluggable virtual to-
kens for retrieval-augmented generation (RAG).

Problem Formulation
Language models are designed to calculate the probability
distribution over sequences of natural language texts. Auto-
regressive models are commonly used for this through next-
token prediction:

pLM =
m∏
i=1

pθ(xi|x<i), (1)

where x<i denotes the sequence of tokens preceding xi at
each step, and θ represents the parameters of the model. For
RAG, a retrieval corpus D and a retriever M are introduced.
Then, the generation process is conditioned on both x<i and
the retrieved results R = MD(x<i) as:

pRAG =
m∏
i=1

pθ(xi|R;x<i), (2)

pRAG-QA =

m∏
i=1

pθ(ai|R;Q; a<i). (3)

Note that here x<i serves as the query for retrieval. In
question-answering (QA) tasks, x<i is usually the question
Q, and the learning objective is to generate the right answer
A = {ai}mi=1. The retriever can yield multiple passages,
which can be concatenated as a long text sequence using
proper separator such as “\n\n”. For brevity, this formula-
tion directly concatenates the retrieved results R with the
question Q, omitting more complex prompt designs. Hence-
forth, we will use the notations in QA tasks as our evaluation
is performed on them.

Scalable and Pluggable Virtual Tokens for RAG
Our SPRING method, shown in the left side of Figure 2,
introduces trainable virtual tokens into the input to opti-
mize LLMs for RAG scenarios. Specifically, following the
notation in Equation (3), we add n trainable tokens T =
[t1, t2, · · · , tn] between the retrieved results R and the input
Q. The generation process can then be described as:

pSPRING =
m∏
i=1

pθ,δ(ai|R; [t1, t2, · · · , tn];Q; a<i),

where δ ∈ Rn×d represents the added parameters of the
trainable tokens (i.e., their embeddings), and d is the em-
bedding size of the LLM. θ denotes the parameters of the
backbone LLM, which are frozen during training. Given that
|δ| ≪ |θ|, our method is highly efficient for training. For
example, with the Mistral-7b model (where d = 4, 096),
when n = 50 tokens are added, we only add and train
50 × 4, 096 = 0.2M parameters, approximately 0.003% of
the full model.

Importantly, we place the virtual tokens T between the re-
trieved results R and the question Q for two main reasons:
(1) In the auto-regressive generation paradigm, positioning
the tokens after the retrieved results allows them to attend to
this information, thereby aiding the model’s comprehension.
(2) Recent studies have indicated that LLMs are particularly
sensitive to the end of an input (Liu et al. 2023). By consis-
tently placing these virtual tokens before the question across
all test samples, we aim to mitigate any potential adverse
effects on the understanding of the question.

Scalable In practical developments, LLMs are often con-
strained by their maximum input lengths, limiting the num-
ber of tokens available for retrieval augmentation (especially
when the retrieved results are very long). Therefore, it is de-
sired to design a mechanism so that any number of virtual
tokens can be used in the inference to improve RAG perfor-
mance. To achieve this, we propose an optimization strategy
working like a “spring” (as shown in Figure 2). Specifically,
for a given sample {R,Q,A} with the total number of added
tokens n, we randomly select a number k(k ≤ n) and uti-
lize the first k virtual tokens t1:k to construct the training ex-
ample as [R; t1, t2, · · · , tk;Q]. This method allows for the
flexible optimization of any number of virtual tokens. Con-
sequently, the number of virtual tokens incorporated during
inference can be arbitrarily selected based on the require-
ments of the application. The effectiveness of this strategy
and its comparison with other methods are further discussed
in our experiments.

Pluggable Due to its designed structure, our method pro-
vides considerable flexibility in application. Practically, if
user input is assessed to require external knowledge, our vir-
tual tokens can be simply appended after the retrieval results
and then fed, along with the user input, into the LLM for
generation. In contrast, if the user input does not necessitate
retrieval, it can be processed directly by the LLM. As our ap-
proach does not adjust the original parameters of the LLM,
it preserves the model’s inherent capabilities. This feature
is particularly important for industry or business since ex-
isting LLMs may have already been deployed for multiple
purposes; our method enhances the retrieval understanding
capabilities of these models without compromising their ex-
isting functionalities.

Inference We illustrate the instructions for using our
SPRING in the right side of Figure 2. After training, the
embeddings of the added tokens have been optimized for
RAG, but these tokens do not correspond to any existing to-
kens in the vocabulary. To make them easy to use, we can
add some special tokens (e.g., [r1], · · · , [r50]) to the
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Figure 2: Illustration of SPRING. Only the embeddings of the added n tokens are trainable during fine-tuning. The added tokens
are scalable where any first k(k ≤ n) tokens can be used in inference.

vocabulary and initialize their embeddings with the trained
embeddings. Then, during inference, after obtaining the re-
trieved results R, we can add any number of these special
tokens (e.g., [r1] · · · [rk]) after R and input them with
the question Q to the LLMs for generation.

We refer to our method as SPRING due to its scalable
and pluggable nature, making it particularly well-suited for
enhancing existing LLMs that have already been deployed.
Additionally, it effectively bridges the gap between retrieved
results and user input, significantly improving the LLMs’ ca-
pabilities in understanding the retrieved external knowledge.

Experiment
Datasets and Retrievers
We conduct experiments on twelve commonly
used question-answering datasets, including Trivi-
aQA (TQA) (Joshi et al. 2017), Natural Questions
(NQ) (Kwiatkowski et al. 2019), HotpotQA (HQA) (Yang
et al. 2018), SQuAD 1.1 (Rajpurkar et al. 2016), Web
Questions (WebQ) (Berant et al. 2013), 2WikiMulti-
HopQA (2Wiki) (Ho et al. 2020), CoQA (Reddy, Chen,
and Manning 2019), MS MARCO (Nguyen et al. 2016),
PopQA (Mallen et al. 2023), Fermi (Kalyan et al. 2021),
Musique (Trivedi et al. 2022), and Bamboogle (Press et al.
2023). These datasets are publicly available at HuggingFace
or their official websites. To evaluate the generalizability
of the methods, we select PopQA, Fermi, Musique, and
Bamboogle as held-out datasets. We mix the training set
of all remaining datasets for training. For all datasets, we
prioritize the use of test sets for evaluation purposes. In
cases where the test set is not available, we utilize the
development set instead. It is worth noting that, though
some datasets have provided golden reference passages
for the answer, we do not use them in our experiment but
use the passages retrieved from the retrieval sets in both
training and inference stages, which aligns with practical
applications. Exact match (EM) and F1 score are employed
as evaluation metrics.

For the retrieval sets, we follow previous studies (Yoran
et al. 2023) and use the combination of Wikipedia and MS
MARCO datasets as the retrieval corpus. Wikipedia con-
tains high-quality human knowledge, which is helpful for

many knowledge-intensive tasks. MS MARCO contains a
large amount of web pages, which can provide information
necessary for curating some natural language questions. We
use the datasets that have already been preprossed into pas-
sages and released on HuggingFace.1 The Wikipedia set has
21M passages, while the MS MARCO set has 8M passages.

We use E5-large (Wang et al. 2022) as the main
retriever in our experiments. The impact of other re-
trievers, i.e., BM25 (Robertson and Zaragoza 2009),
BGE-base (Xiao et al. 2023), and E5-base, is studied in
our further analysis. Among these retrievers, BM25 is a non-
neural sparse retrieval algorithm, while others are neural-
based dense retrievers. In general, dense retrievers perform
better on several benchmarks (Muennighoff et al. 2023).

Baseline Methods

We consider both the base and instruction fine-tuned ver-
sions of Mistral-7b, LLaMA-2-7b, and LLaMA-2-13b as the
backbone models, and compare our SPRING with the fol-
lowing baselines.

• Concat: This method directly concatenates the retrieval
results and the question for evaluation.

• Prompt: This method uses a manually-crafted prompt
to indicate the use of retrieval information.

• Prefix-tuning (Li and Liang 2021): This method uses
prefix-tuning to fine-tune the backbone models. To make a
fair comparison with our method, we add 50 prefix tokens
for training.

• LoRA (Hu et al. 2022): This method uses LoRA to fine-
tune the backbone models. We use the hyperparameters sug-
gested by the LLaMA’s official guidance.2 To further vali-
dates the effectiveness of our SPRING on models that have
already been optimized for RAG, we also train our method
based on the LoRA checkpoint, and denote this variant as
SPRING+.

1Wikipedia passages: https://huggingface.co/datasets/Tevatron/
wikipedia-nq-corpus. MS MARCO passages: https://huggingface.
co/datasets/Tevatron/msmarco-passage-corpus.

2LLaMA Recipes, https://github.com/meta-llama/llama-
recipes/blob/main/src/llama recipes/configs/peft.py
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with Retrieval without Retrieval

Dataset Metric Concat Prompt Prefix LoRA SPRING SPRING+ Concat Prompt Prefix LoRA SPRING SPRING+

Tuning Parameters 0 0 0.2M 4M 0.2M 4.2M 0 0 0.2M 4M 0.2M 4.2M

Trivia QA EM 0.00 57.79 11.74 62.76 65.71 63.89 0.01 39.90 0.00 0.03 46.56 43.37
F1 65.60 80.33 59.97 85.44 85.26 85.94 63.96 69.72 28.30 34.91 74.48 74.89

NQ EM 0.00 28.99 13.04 47.95 42.35 49.78 0.00 13.36 0.00 0.00 18.80 25.54
F1 41.77 58.72 38.22 74.15 70.73 75.22 43.74 48.63 17.74 29.10 55.75 60.82

HQA EM 0.00 26.36 5.79 39.95 35.26 41.14 0.00 17.07 0.00 0.03 20.15 23.38
F1 44.91 56.15 42.59 68.93 65.44 69.95 47.54 49.50 17.45 27.57 54.79 57.99

SQuAD EM 0.00 23.92 7.19 35.71 33.67 35.98 0.00 8.61 0.00 0.00 12.71 13.90
F1 43.05 57.66 39.75 68.05 66.99 68.41 43.32 46.81 21.88 27.51 53.58 54.93

WebQ EM 0.00 17.53 4.44 43.65 31.84 48.10 0.00 14.79 0.00 0.00 24.95 28.81
F1 37.46 52.10 31.55 71.99 64.78 73.88 44.34 50.60 20.14 32.36 59.83 62.95

2Wiki EM 0.00 22.64 4.38 35.93 31.80 37.12 0.00 23.45 0.00 0.01 24.62 28.60
F1 47.77 55.58 41.82 63.85 62.03 64.60 52.83 53.55 21.14 37.09 56.83 59.12

CoQA EM 0.00 8.20 1.56 12.89 13.28 13.87 0.00 8.59 0.00 0.00 9.96 12.50
F1 27.98 36.72 20.02 41.19 42.41 42.04 32.97 36.58 13.15 18.99 39.96 41.36

MS MARCO EM 0.00 5.73 0.60 8.13 6.57 8.27 0.00 2.56 0.00 0.01 2.09 3.24
F1 56.44 53.81 50.56 54.81 53.48 55.90 49.50 47.75 47.44 52.44 51.41 49.84

PopQA* EM 0.00 39.79 10.02 47.15 48.71 46.98 0.00 16.05 0.00 0.00 20.25 18.70
F1 56.49 68.26 44.54 73.12 73.90 73.29 53.61 54.85 20.39 25.09 58.32 58.05

Fermi* EM 0.00 0.06 0.00 0.12 0.18 0.24 0.00 0.06 0.06 0.00 0.06 0.19
F1 21.66 18.16 12.65 29.63 31.15 30.67 25.51 17.84 20.33 25.42 29.28 30.37

Musique* EM 4.01 4.05 0.04 10.86 8.80 12.58 0.00 1.93 0.66 0.17 3.64 4.43
F1 38.79 38.64 20.91 52.65 48.74 53.65 42.30 36.18 35.22 45.31 44.93 47.70

Bamboogle* EM 12.80 12.80 0.00 24.22 22.66 28.13 0.00 4.69 3.20 0.00 12.00 12.80
F1 45.81 48.13 13.67 59.05 56.95 62.00 42.61 42.24 36.22 45.14 47.69 46.89

Average EM 1.40 19.80 4.90 30.78 28.40 32.17 0.00 12.59 0.33 0.02 16.32 17.96
F1 43.98 51.30 34.69 61.91 60.15 62.96 45.19 46.19 24.95 33.41 52.24 53.74

Table 1: Evaluation results of different methods on twelve QA datasets. The retriever is E5-large model, and the number of
retrieved passages is set as three. The number of virtual tokens used in SPRING is set as 50. ∗PopQA, Fermi, Musique, and
Bamboogle are invisible during training. “Prefix” stands for prefix-tuning, and “SPRING+” is trained based on the LoRA’s
checkpoint. The best results are in bold.

Implementation Details
We use PyTorch (Paszke et al. 2019) and Huggingface Ac-
celerate library to implement all methods. The learning rate
is set as 1e-4 with a warm-up ratio of 0.1. All methods are
trained for three epochs, with a training batch size of 256.
We use eight NVIDIA A800 GPUs for training. Training
our SPRING for Mistral-7b models consumes around 2.2
hours per epoch. The embeddings of the virtual tokens are
initialized by the embeddings of the prompt: “According to
the previous relevant passages, please answer the following
question. Only return the answer without any other words.”
Following the settings of prefix-tuning, if the number of
tokens required exceeds those available in the prompt, the
prompt is repeated to complete the initialization; if fewer
are needed, the prompt is truncated accordingly. Addition-
ally, we experiment with random initialization of tokens
but observe that its performance is slightly worse than that
achieved through prompt-based initialization. Our code is
available at https://github.com/DaoD/SPRING.

Experimental Results
We fine-tune the prefix-tuning, LoRA, and SPRING meth-
ods on RAG tasks, and then evaluate their performance

in scenarios both with (RAG) and without (non-RAG) re-
trieval. For SPRING, we use k = 50 virtual tokens for in-
ference by default, and the impact of token quantity k is
discussed in later. The experimental results are shown in
Table 1. To save space, we only show the results based on
Mistral-7b-instruct.

We can observe: (1) It is evident that SPRING signifi-
cantly improves the RAG performance of the original LLM
with manually-crafted prompts (the average EM and F1
scores are improved by 43.4% and 17.3%, respectively). It
outperforms LoRA on certain datasets, such as TriviaQA
and CoQA. Given that SPRING involves only 0.2M train-
able parameters, these results demonstrate its remarkable ef-
ficiency and effectiveness. (2) While LoRA achieves slightly
better performance on some datasets, it adjusts the LLMs’
original parameters, which adversely impact their perfor-
mance in non-RAG scenarios—a significant drop has been
observed, even far worse than the original models. This chal-
lenge also extends to other general generation tasks, which
will be discussed in the next section. (3) In non-RAG evalu-
ation, only SPRING and SPRING+ demonstrate better per-
formance than the Prompt method. This indicates that even
in the absence of retrieved results, adding virtual tokens is

26170



Dataset n-shot LoRA SPRING Diff

BoolQ 0 79.30 82.97 3.67
CommonsenseQA 0 55.45 63.80 8.35
CommonsenseQA 4 59.87 67.07 7.20
GSM8K 8 17.33 31.89 14.56
MMLU 0 51.30 53.62 2.32
MMLU 5 48.76 54.96 6.20

Table 2: Performance comparison on other datasets.

still beneficial. We speculate that beyond simply utilizing
retrieved results, virtual tokens can help the LLM under-
stand the task goal and format (e.g., the task is question-
answering rather than text continuation). (4) Based on the
LoRA’s checkpoint, SPRING+ achieves the best perfor-
mance on most datasets. Additionally, all backbone mod-
els show improvements with SPRING. These findings verify
the versatility and flexibility of our approach, confirming its
suitability for enhancing various LLMs in RAG scenarios.
(5) Using manually-crafted prompts is effective for improv-
ing LLMs’ performance on RAG tasks. However, this im-
provement is limited as no training is involved. (6) SPRING
achieves robust performance on the held-out datasets, val-
idating the good generalizability of our method. (7) Inter-
estingly, prefix-tuning cannot perform well for RAG, high-
lighting that the insertion position of the virtual tokens in
SPRING is both reasonable and effective.

Further Analysis
We further conduct a series of experiments to investigate
the impact of different settings in SPRING. All the fol-
lowing experiments are conducted based on fine-tuning the
Mistral-7b-instruct model.

Performance on Other Tasks To examine the impact of
different fine-tuning methods on the inherent capabilities of
LLMs, we evaluate the performance of models fine-tuned
by LoRA and SPRING on several other (non-RAG) tasks.
These tasks are commonly used to evaluate LLMs’ reason-
ing, mathematical abilities, and world knowledge, including
BoolQ (Clark et al. 2019), CommonsenseQA (Talmor et al.
2019), GSM8K (Cobbe et al. 2021), and MMLU (Hendrycks
et al. 2021). The experimental results are shown in Table 2.3
From the results, we can observe: (1) Thanks to the plug-
and-play design of our method, SPRING can revert to to
the original LLMs by not using virtual tokens. Therefore, it
successfully preserves the original capabilities of the LLMs.
In contrast, LoRA, which adjusts the model’s parameters
for RAG tasks, inevitably compromises the model’s perfor-
mance on other tasks. (2) A noticeable decline is observed
in the few-shot evaluation, reflecting a decrease in the in-
context learning abilities of LLMs. This decline may stem
from the fact that RAG fine-tuning does not incorporate in-
context learning capabilities. Besides, fine-tuning for RAG

3We notice that our results are quite different from those of-
ficially reported, which we attribute to the impact of different
prompts.
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Figure 3: Average performance on nine QA datasets with
various numbers of virtual tokens.

Prompt SPRING

Retriever EM F1 EM F1

BM25 21.23 54.94 30.94 62.73
BGE-base 23.07 56.12 31.81 63.46
E5-base 24.38 56.84 33.34 64.49
E5-large 25.66 57.70 34.35 65.00

Average 23.58 56.40 32.61 63.92
Variance 2.69 1.02 1.75 0.78

Table 3: Average performance on nine QA datasets with dif-
ferent retrievers.

tasks may lead the model to overfit to specific task formats
(prompts), thereby impairing its general generation abilities.

Impact of Token Quantity In SPRING, we design a scal-
able training approach that enables to use arbitrary numbers
of virtual tokens in inference. To validate its effectiveness,
we test the performance of our method with various num-
bers of virtual tokens and compare it with a variant model
trained with a fixed number of tokens (k = 50). The ex-
perimental results are illustrated in Figure 3. In general, we
can observe that the performance of SPRING increases with
more virtual tokens used. Surprisingly, SPRING can signif-
icantly enhance LLMs’ performance in RAG scenarios with
just a single token, which is very encouraging.4 In compari-
son, training with a fixed number of tokens limits the flexi-
bility of SPRING, making it can only be used with the same
number of tokens in inference (i.e., k = 50).

Effects of Different Retrievers In our experiments,
SPRING is fine-tuned using passages retrieved by
E5-large. To investigate its effectiveness with other
retrievers, we conduct an experiment by testing its perfor-
mance with passages retrieved by BM25, BGE-base, and

4This varies across different LLMs.
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Figure 4: Average performance on nine QA datasets with
different number of retrieved passages.

E5-large. The results are presented in Table 3. First,
SPRING achieves consistent improvement over the original
model using manually crafted prompt, thereby confirming
the generalizability of our approach. Second, compared
to the original model, the performance gap (variance)
among different retrievers becomes smaller, highlighting
SPRING’s robustness to variations in retrievers. Finally,
even fine-tuned with a superior retriever (i.e., E5-large),
SPRING maintains strong performance well with less
effective retrievers (such as BM25). This indicates that
our method can effectively adapt to varying quality of
retrieved results. Hence, there is no necessity to retrain the
virtual tokens with each update of retrievers in practical
applications, significantly enhancing its applicability.

Influence of Retrieved Passages During the fine-tuning
of SPRING, we construct training samples by randomly se-
lecting the top-m (m ∈ [1, 5]) retrieved passages. This aims
to enhance SPRING’s adaptability by ensuring it can oper-
ate effectively with varying numbers of retrieved passages in
real-world scenarios. To evaluate the effect of this training
strategy, we test the SPRING’s performance across a range
from zero to five passages. Figure 4 illustrates the results.
We can find that SPRING’s performance gradually improves
as more retrieved passages are used (m = 0 → 4), suggest-
ing that more retrieved passages contribute valuable knowl-
edge for question answering. However, the performance
peaks at four passages and declines when more passages are
added. This decrease could be attributed to noise accumula-
tion within the retrieved knowledge, a phenomenon also re-
ported in recent studies (Yoran et al. 2023). Despite this, the
use of retrieved passages still results in performance gains
compared to scenarios without retrieval (m = 0), highlight-
ing again the benefits of RAG.

Cross-Dataset Generalizability Inspired by previous
studies in multi-task learning (Raffel et al. 2020; Khashabi
et al. 2020), we mix eight QA datasets for training as they

Training → TQA NQ Mix

Test ↓ EM F1 EM F1 EM F1

TQA 62.80 84.65 65.51 84.73 65.71 85.26
NQ 32.19 64.98 45.26 72.68 42.35 70.73
HQA 22.97 56.95 28.11 59.45 35.26 65.44
SQuAD 25.24 61.39 30.81 64.32 33.67 66.99
WebQ 26.03 62.40 34.13 67.30 31.84 64.78
2Wiki 17.32 54.41 25.43 58.21 31.80 62.03
CoQA 6.05 36.61 7.62 38.54 13.28 42.41
MARCO 3.26 31.88 3.88 33.33 6.57 53.48
PopQA 44.07 72.50 48.28 74.07 48.71 73.90

Average 26.66 58.42 32.11 61.40 34.35 65.00

Table 4: Performance comparison between training on a spe-
cific dataset or a mixture of all datasets.

require similar LLM capabilities (e.g., reasoning). To study
the impact of this strategy, we conduct experiments by train-
ing SPRING on each dataset individually and then testing
its performance on the others. Table 4 shows partial results.
As indicated, training on a mixed dataset generally enhances
performance on most datasets, thereby validating the bene-
fits of multi-task learning. While training on a single dataset,
such as NQ, may yield superior results on its specific test set,
such improvements often fail to generalize to other datasets.
Notably, training solely on NQ may negatively impact per-
formance on MS MARCO, where the original LLM using
a prompt could outperform it. These findings inspire us to
carefully consider the interaction between different datasets
when applying our method in future applications.

Conclusion
In this paper, we introduced scalable and pluggable vir-
tual tokens for retrieval-augmented large language models.
Our method, SPRING, serves as a parameter-efficient fine-
tuning approach that significantly enhances RAG perfor-
mance with the addition of only 0.2M trainable parame-
ters. More importantly, the plug-and-play nature of our ap-
proach successfully preserves the performance of LLMs on
non-RAG tasks, while its scalable training strategy broad-
ens the method’s applicational flexibility. Through extensive
experiments across various datasets, we have demonstrated
the effectiveness, generalizability, flexibility, and high effi-
ciency of our method. We believe that our research will fos-
ter further integration of information retrieval and LLMs,
and advance the development of other parameter-efficient
fine-tuning technologies for LLMs.
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V.; Goyal, N.; Küttler, H.; Lewis, M.; Yih, W.; Rocktäschel,
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